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Abstract
The scaling behaviour of randomly branched polymers in a good solvent is
studied in two to nine dimensions, using as microscopic models lattice animals
and lattice trees on simple hypercubic lattices. As a stochastic sampling method
we use a biased sequential sampling algorithm with re-sampling, similar to
the pruned-enriched Rosenbluth method (PERM) used extensively for linear
polymers. Essentially we start simulating percolation clusters (either site or
bond), re-weigh them according to the animal (tree) ensemble, and prune or
branch the further growth according to a heuristic fitness function. In contrast
to previous applications of PERM, this fitness function is not the weight with
which the actual configuration would contribute to the partition sum, but is
closely related to it. We obtain high statistics of animals with up to several
thousand sites in all dimension 2 � d � 9. In addition to the partition
sum (number of different animals) we estimate gyration radii and numbers of
perimeter sites. In all dimensions we verify the Parisi–Sourlas prediction, and
we verify all exactly known critical exponents in dimensions 2, 3, 4 and � 8.
In addition, we present the hitherto most precise estimates for growth constants
in d � 3. For clusters with one site attached to an attractive surface, we verify
for d � 3 the superuniversality of the cross-over exponent φ at the adsorption
transition predicted by Janssen and Lyssy, but not for d = 2. There, we find
φ = 0.480(4) instead of the conjectured φ = 1/2. Finally, we discuss the
collapse of animals and trees, arguing that our present version of the algorithm
is also efficient for some of the models studied in this context, but showing that
it is not very efficient for the ‘classical’ model for collapsing animals.

PACS numbers: 02.70.Uu, 05.10.Ln, 05.50.+q, 82.35.Lr

1. Introduction

Lattice animals (or polyominoes, as they are sometimes called in mathematics [1]) are just
clusters of connected sites on a regular lattice. Such clusters play an important role in
many models of statistical physics, as e.g. percolation [2], the Ising model (Fortuin–Kastleyn
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(a) (b)
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Figure 1. (a) A site animal with eight sites. (b) A site tree (‘strongly embeddable tree’). (c) A
bond animal which is not a tree. (d) A bond tree (‘weakly embeddable tree’).

clusters, Swendsen–Wang algorithm [3, 4]), and even lattice gauge theories [5]. The basic
combinatorial problem associated with them is to count the number ZN of different animals
of N sites. Two animals are considered as identical, if they differ just by a translation (i.e., we
deal with fixed animals in the notation of [6]), but are considered as different, if a rotation or
reflection is needed to make them coincide. Thus there are, e.g., d animals of N = 2 sites on
a simple hypercubic lattice of dimension d, and d(2d − 1) animals with N = 3.

The animal problem can be turned into a statistical problem by giving a statistical
weight to every cluster. In contrast to percolation, where different shapes acquire different
weights, all clusters with the same number N of sites are given the same weight. This is
similar to self-avoiding walks (SAW). A SAW on a lattice is a connected cluster of N sites
with equal weight on all clusters, but with a restriction on its shape: each SAW has to be
topologically linear, i.e. each site is connected by bonds to at most two neighbours. No
such constraint holds for animals, thus animals are the natural model for randomly branched
polymers [7].

In addition to animals (or site animals, to be more precise) one can also consider bond
animals and lattice trees. A bond animal is a cluster where bonds can be established between
neighbouring sites ( just as in SAWs), and connectivity is defined via these bonds: if there is no
path between any two sites consisting entirely of established bonds, these sites are considered
as not connected, even if they are nearest neighbours. Different configurations of bonds are
considered as different clusters, and clusters with the same number of bonds (irrespective of
their number of sites) have the same weight [8]. Weakly embeddable trees are bond animals
with tree topology, i.e. the set of weakly embeddable trees is a subset of bond animals, each
with the same statistical weight. Strongly embeddable trees are, in contrast, the subset of site
animals with tree-like structure. All these definitions are illustrated in figure 1.

Like many other statistical models, animals are characterized by scaling laws in the limit
of large N. It is believed that all the above statistics (site and bond animals, weakly and strongly
embeddable trees) are in the same universality class (same exponents, same scaling functions)
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which is that of randomly branched polymers. The number of animals (i.e. the microcanonical
partition sum) should scale as [7]

ZN ∼ µNN−θ , (1)

and the gyration radius as

RN ∼ Nν. (2)

Here µ is the growth constant or inverse critical fugacity, and is not universal. In contrast, the
Flory exponent ν and the entropic exponent θ should be universal.

In spite of the obvious similarity to the SAW and percolation problems, there are a number
of features in which the animal problem is unusual:

• The upper critical dimension is d = 8. There, ν = 1/4 and θ = 5/2 [9].
• The model is not conformally invariant [10], and thus the Flory exponent ν is not known

exactly in d = 2.
• Using supersymmetry, it has been argued by Parisi and Sourlas [11] that the animal

problem in d dimensions is related to the Yang–Lee problem (Ising model in an imaginary
external field) in D = d − 2 dimensions. Based on this relationship (which is now proven
rigorously [12], using a mapping onto the hypercubes problem at negative fugacity [13])
they argued that θ and ν should not be independent, but

θ = (d − 2)ν + 1. (3)

This implies in particular that θ = 1 in d = 2. In addition, they showed that ν = 1/2 in
d = 3.

• Assuming universality so that scaling of the hard squares model at negative fugacity can
be inferred from Baxter’s solution of the hard hexagon model, and mapping the hard
squares model onto lattice animals in four dimensions, Dhar [14] obtained θ = 11/6 for
d = 4. Thus one knows the exact values of ν for d = 1, 3, 4 and 8, but not for d = 2, 5, 6
and 7.

• In a series of papers, Janssen and Lyssy [15–17] studied animals attached to an adsorbing
plane surface. For weak adsorption (high temperature) the animals have basically the
same structure as in the bulk, and the partition sum has the same scaling, Z′

N ∼ µ′NN−θ ′

with µ′ = µ and θ ′ = θ [18, 19]1. For strong adsorption (low temperature) there is an
adsorbed phase. Janssen and Lyssy argued that the cross-over exponent between these
two phases should be super-universal, φ = 1/2 for all dimensions d � 2.

In the present paper we address all these points by means of a novel Monte Carlo
algorithm which follows essentially the strategy used in the pruned-enriched Rosenbluth
method (PERM) [20]. This is a recursively (depth first) implemented sequential sampling
method with importance sampling (bias) and re-sampling (‘population control’). It seems that
PERM in the present implementation is much more efficient than previous sampling methods
for animals and trees. Indeed we shall present numerous new estimates for critical exponents
and growth constants which had previously been measured only with much larger error bars
or not at all.

All this holds for athermal animals and trees, i.e. when there are no attractive forces
between monomers. When such forces become strong, a number of different collapse phase
transitions are claimed to occur, depending on the detail of the model [21–33]. The simplest one
of these involves site animals and a simple contact energy for each occupied nearest neighbour

1 DeBell et al write θ ′ = θ + 1, since they obviously counted shifted animals in the bulk as different, while we
consider the ensemble of ‘fixed animals’ where translated shapes are identified.
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pair [30–33] and is undisputed. But another transition, between two collapsed phases
with different densities of bonds [21–23, 27, 29], is still controversial [24–26]. At present
all versions of our algorithm become inefficient for the first model, when the collapse point
is approached. This is a bit disappointing in view of the fact that PERM for linear polymers
is dramatically more efficient at the coil–globule transition than for athermal SAWs [20].
Obviously this leaves much room for further improvements. On the other hand, our method
should work well for the other transition in large parts of the phase diagram.

Details of the algorithm for site animals will be given in section 2. Detailed studies of
site animals in the bulk and in contact with a wall will be presented in sections 3 and 4. Bond
animals and trees will be discussed in section 5. Finally, in section 6 we will study animal (and
tree) collapse due to attractive forces between monomers. The paper ends with conclusions in
section 7.

2. Numerical methods

2.1. Previous methods

2.1.1. ε-Expansions. Field theoretic ε-expansions (where ε is the distance from the critical
dimension) were applied already very early to animals [7] and to the Yang–Lee problem [34].
When the relationship between both problems was established, the latter gave the most precise
predictions for critical animal behaviour in high dimensions (d � 5).

2.1.2. Exact enumeration. Exact enumeration of animals and trees is surprisingly non-
trivial [35–38]. Nevertheless, very extensive enumerations have recently been performed
by Jensen [6, 39, 40] for site animals and site trees in d = 2. At present they give
the best numerical verification of the prediction θ = 1, and they give the most precise
estimates for the Flory exponent (ν = 0.641 15 ± 0.000 05) and for the growth constants:
µ = 4.062 5696 ± 0.000 0005 for animals [6], and 3.795 254 ± 0.000 008 for trees. These
values are more precise than old estimates obtained by finite size scaling using strip geometry
[41]. There are also enumerations of various animals and trees in higher dimensions
[9, 21, 42–48], but they are much less complete and in general they do not at present give the
best estimates for critical parameters.

2.1.3. Markov chain Monte Carlo methods. The latter are obtained nowadays by Markov
chain Monte Carlo (MCMC) methods. Such algorithms have been used for animals since at
least 20 years [31, 49–51]. At present, the most efficient MCMC algorithm for lattice trees is
a version of the pivot algorithm [8, 52–55]. These simulations showed that ν = 1/2 in d = 3,
as predicted by [11]. Simulations of animals attached to an attractive wall verified that indeed
φ = 1/2 in d = 2 [53] (as also verified with transfer matrix and similar methods [56, 57]),
although simulations in d = 3 gave φ ≈ 0.714 [58], in gross violation of the Janssen–Lyssy
prediction.

When applied to SAWs, the pivot algorithm works by choosing a pivot point and proposing
a rotation of the shorter arm around the pivot, and accepting it when this leads to no violation
of self-avoidance [59]. When adapted to trees, one again chooses a random pivot point, but
now the entire branch hinging on this pivot is cut and glued somewhere else. Again this move
is accepted only if this leads to no violation of self-avoidance and if it would not lead to wrong
cluster topology.

This method also allows us to estimate growth constants, if it is used together with the
atmosphere method [54]. In the latter, it is counted how many possible ways there exist to
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grow the cluster by one further step, giving in this way an estimate of ZN+1/ZN . Basically the
same method had been used in [60] to obtain very precise estimates for the critical percolation
thresholds in high-dimensional lattices.

2.1.4. Cluster growth (‘sequential sampling’, ‘static’) methods. The first stochastic growth
algorithm for trees seems to have been devised by Redner [61]. Similar methods were then
used by Meirovitch [62] and Lam [46] for animals. But already Leath seems to have realized
that his well-known algorithm for growing percolation clusters [63] could be used also for the
study of animals, simply by reweighing the clusters. Recently this was taken up systematically
in [64].

In the following we shall discuss the latter in some detail, and we shall restrict our
discussion to site animals. The authors of [64] basically use a standard growth algorithm for
percolation clusters [63, 65, 66], and then reweigh the cluster so that they obtain the correct
weight for the animal ensemble. In a percolation cluster growth algorithm for site percolation,
one starts with a single seed site and writes it into an otherwise empty list of ‘growth sites’.
Then one recursively picks one item in the list of growth sites, removes it from the list and
adds it with probability p to the cluster, and adds all its wettable neighbours to the list. This
is repeated until either the cluster size exceeds some fixed limit (in which case the cluster is
discarded), or until the list is empty. A cluster with N sites, b boundary sites, and with fixed
shape is obviously obtained with probability

PNb = pN(1 − p)b, (4)

i.e. with the correct probability so that any unweighed average is just an average over the
percolation ensemble. Repeating this many times, the animal partition sum is then

ZN = 〈1/PNb〉 = p−N 〈(1 − p)−b〉. (5)

The authors of [64] called their method a Rosenbluth method, in view of the obvious
analogy with the Rosenbluth–Rosenbluth method [67] for SAWs. In the latter one also
samples from a biased ensemble and then reweighs each configuration with the inverse of the
sampling probability to obtain the correct partition sum.

2.2. PERM

Like the original Rosenbluth–Rosenbluth method for SAWs, the method of [64] has the
disadvantage that the weights have a very wide distribution for large N. Thus even a very
large sample will finally, when N gets too big, be dominated by a single configuration, and the
method becomes inefficient even though it is easy to generate huge samples.

PERM (or any other strategy with resampling) tries to avoid this by trimming the width
of the distribution of weights, by pruning configurations with very low weight and making
clones of high weight configurations which then share the weight among themselves. In many
situations this has proven to be extremely efficient [68–70]. But we cannot yet apply it to
animals, since we have to be able to estimate the weight of a cluster while it is still growing, and
up to now we have only discussed the relationship between animals and percolation clusters
after they had stopped growing.

In the following we shall again discuss only site animals, bond animals and trees being
discussed in section 5.

To obtain the relationship between still growing percolation clusters and animals, let us
consider a cluster with N sites, g growth sites, and b sites which definitely belong to the



780 H-P Hsu et al

Figure 2. Growing clusters generated breadth first (top) and depth first (bottom). In both cases we
used p = pc = 0.5927, and in both cases N = 4000. Occupied sites are depicted by small points,
growth sites by heavy dots. Both figures are plotted with the same scale.

boundary. At each of the growth sites the cluster can grow further, or it can stop growing
with probability 1 − p. Thus this cluster will contribute with weight (1 − p)g to the sample
of percolation clusters with N sites and b + g boundary sites. Its contribution to the animal
ensemble is smaller by a factor [pN(1 − p)b+g]−1, and we have thus

ZN = p−N 〈(1 − p)−b〉. (6)

This is exactly the same formula as above, but now the average is taken over all growing
clusters, while before we had averaged over clusters which had stopped growing.

Before we can implement these ideas, we have to discuss two problems:

(a) How are the clusters to be grown precisely?
(b) On what basis should we decide when to prune and when to clone a cluster?

As we shall see, both questions are not trivial.
(a) Percolation cluster growth algorithms can be depth first or breadth first. In the former,

growth sites are written into a first-in last-out list (a stack). A typical code for this is given in
[66]. For a breadth first implementation we use, instead, a first-in first-out list (‘fifo-list’ or
queue). Two 2d clusters growing according to these two schemes, with p = pc = 0.5927, are
shown in figure 2. Both have N = 4000. But the cluster grown using a stack has a completely
different shape and has ≈3 times as many growth sites as that grown with a queue! Most
of these growth sites are nearly dead (their descendents will die after a few generations), but
this is not realized because they are never tested. Since also the fluctuations in the number
of growth sites are much bigger in a depth first implementation, the weights in equation (6)
will also fluctuate much more, and we expect much worse behaviour. This is indeed what we
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found numerically: results obtained when using a stack for the growth sites were dramatically
much worse than results obtained with a queue.

Note that this is independent of the way how pruning and cloning is done. Indeed we
implemented this ‘population control’ recursively as a depth first strategy, as was done for all
previous applications of PERM.

In addition, there are also some minor ambiguities in percolation cluster growth
algorithms, such as the order in which one searches the neighbours of a growth site and
writes them into the list. In two dimensions one can e.g., use the preferences east–south–
west–north, or east–west–north–south, or a different random sequence at every point. We
found no big differences in efficiency.

(b) In most previous applications of PERM, the best strategy was to base the decision
whether to prune or branch directly on the weight with which the configuration contributes to
the partition sum2. This would mean in the present case that we clone, if Wn ≡ p−n(1−p)−b >

c+Ẑn where c+ is a constant of the order 1, . . . , 10 and Ẑn is the current estimate of Zn.
Similarly, a cluster would be killed (with probability 1/2 [20]), if Wn < c−Ẑn with c− slightly
smaller than 1.

In the present case this would not be optimal, since it would mean that mostly clusters
with few growth sites are preferred (they tend to have larger values of b, for the same n), and
these clusters would die soon and would contribute little to the growth of much larger clusters.
Thus we defined a fitness function

fn = Wn/(1 − p)αg = p−n(1 − p)−b−αg (7)

with a parameter α to be determined empirically, and used

fn > c+〈fn〉, fn < c−〈fn〉 (8)

as criteria for cloning and pruning. We checked in quite extensive simulations that best results
were obtained with α = 1 (except when N is small), and in the following we shall use only
this choice.

Finally we have to discuss the optimal values of p. It is clear that we should not use
p > pc, where pc is the critical percolation threshold. Since minimal reweighing is needed
for small p (subcritical percolation is in the animal universality class), one might expect
p � pc to be optimal. This is indeed true for small values of N (which we are not primarily
interested in), but not for large N. For the latter it is more important that clusters grown with
p � pc have to be cloned excessively, since they otherwise would die rapidly in view of their
few growth sites.

To decide this problem empirically, we show in figure 3 the errors of the estimated free
energies FN = −ln ZN for d = 2. More precisely, we show there one standard deviation
multiplied by the square root of the CPU time (measured in seconds), for different values of p.
Each simulation was done on a Pentium with 3 GHz using the gcc compiler under Linux,
and each simulation was done for Nmax = 4000 (although we plotted some curves only up
to smaller N, omitting data which might not have been converged). We see clearly that small
values of p are good only for small N. As N increases, the best results were obtained for
p → pc. The same behaviour was observed also in all other dimensions, and also for animals
on the bcc and fcc lattices in three dimensions (data not shown). As an example we show
in figure 4 the analogous results for d = 8. There we used a 64-bit machine (a 600 MHz
Compaq ALPHA), because this simplified hashing (for large d we used hashing as described
e.g. in [60]).

2 The only previous exception was in ground-state predictions for the HP protein model, where it was found useful
to include a bias against H–P contacts in the population control [71, 72].
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Figure 3. Statistical errors of ln Z for lattice animals in d = 2 for various values of p. To make
the different runs comparable, errors are multiplied by the square root of the CPU time measured
in seconds. In two dimensions pc = 0.5927.
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Figure 4. Same as figure 3, but for d = 8 where pc = 0.0752. The straightest curve corresponds
to the largest p.

Note that the errors shown in figure 4 are much smaller than those in figure 3, although
the machine was slower and the animals were twice as large (Nmax = 8000). Indeed, the
errors decreased monotonically with d, being largest for d = 2. Using p slightly smaller than
pc we can obtain easily very high statistics samples of animals with several thousand sites for
dimensions � 2. A typical 2d animal with 12 000 sites is shown in figure 5, and a 3d animal
on the bcc lattice with 16 000 sites is shown in figure 6.

To check the reliability of our error bars we looked at distributions of tour weights as
described in [73]. A tour is the set of all configurations generated by cloning from one common
start and therefore possibly being strongly correlated. If the distribution P of tour weights W

is very broad, we are back to the problem of the Rosenbluth method that averages might be
dominated by a single tour. To check for this, we plot P(ln W) against ln W , and compare its
right-hand tail to the function 1/W . If the tail decays much faster, we are presumably on the
safe side, because then the product WP(ln W) has its maximum where the distribution is well
sampled. If not, then the results can still be correct, but we have no guarantee for it.



Simulations of lattice animals and trees 783

-100

 0

 100

 200

 300

 400

-400 -300 -200 -100  0  100  200

Figure 5. A typical lattice animal with 12 000 sites on the square lattice.

Figure 6. A 3d lattice animal with 16 000 sites on the bcc lattice.

In figure 7, we show these tour weight distributions for two-dimensional animals with
4000 sites, for p = 0.57 and for p = 0.47.3 We see that the simulation with p = 0.57 is on
the safe side, but not that for p = 0.47. Similar plots for other simulations described in this
paper showed that all results reported below are converged and reliable.

Error bars quoted in the following on raw data (partition sums, gyration radii and average
numbers of perimeter sites or bonds) are straightforwardy obtained single standard deviations.
Their estimate is easy since clusters generated in different tours are independent, and therefore
errors can be obtained from the fluctuations of the contributions of entire tours (note that
clusters within one tour are not independent, and estimating errors from their individual values
would be wrong).

On the other hand, errors on critical exponents and on growth constants are obtained by
extrapolation. This is an ill-posed problem, and therefore any error obtained this way is to
some degree subjective. All such errors quoted in the following are based on plotting the data

3 Note the very large values of ln W . Much effort was spent to write the codes such that overflows were avoided.
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of Jensen [40].

in different ways, plotting effective exponents against different powers of 1/N , trying different
ansatze for higher order correction to scaling terms, etc. They are not based on simply making
least square fits over fixed intervals of N, as this could lead to very large underestimations
of corrections to scaling. All quoted numbers are such that we believe, to the best of our
knowledge, that the true value is most likely within one quoted error bar.

The total CPU time spent on the simulations reported in this paper is ≈25 000 h on fast
PCs and work stations.

3. Site animals in two to nine dimensions

3.1. d = 2

Before we report our final results, we show one more test where we compare our raw data for
d = 2 with the exact enumerations of [6]. In figure 8 we show the true relative errors of our
estimates of the partition sum. Although there is some systematic trend visible, this is still
within two standard deviations and thus not significant (note that our values for different N are
not independent). Relative errors of the squared gyration radii are shown in figure 9. These
data show that our estimates are basically correct, including the error bars.

Plotting directly our values of ZN would not be very informative, neither would be a plot
of ln ZN − aN , where a = ln µ. Both ways of plotting would hide any statistical errors.
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and 1.401 819 (top to bottom). Error bars are plotted only for the central curve.

A more meaningful way of plotting our full data for ZN is used in figure 10, where we plot
ln ZN − aN + ln N against N for three values of a. Error bars are shown only for the central
curve, although all three curves have of course the same errors. In view of equation (1), and
accepting the prediction that θ = 1, we would expect a curve which becomes horizontal for
large N. This is indeed seen for the central curve, but the obvious corrections to scaling make
a precise estimate of µ difficult. The same is true for the gyration radii. In figure 11 we show
R2

N

/
N2ν against N for three candidate values of ν. Again strong corrections to scaling are

seen.
For these corrections one expects

ZN ∼ µNN−θ (1 + bZN−� + · · ·) (9)

and

R2
N ∼ N2ν(1 + bRN−� + · · ·), (10)

where � is the correction exponent [9], bZ and bR are non-universal amplitudes, and the dots
stand for higher order terms in 1/N . Note that � is universal, and is the same in both equations.
There are several methods discussed in the literature for estimating �. We estimated it by
plotting ln ZN − aN + ln N and R2

N

/
N2ν against x ≡ 1/Nδ . Straight lines are expected near

x = 0 if and only if δ = �. We could not find a value of δ where these lines were absolutely
straight for all x, but the straightest behaviour near x ≈ 0 was obtained with δ ≈ 0.9, see
figures 12 and 13.
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Figure 14. Average number of boundary sites per cluster site for 2d animals, plotted against 1/N2.
To reduce finite size effects we actually subtracted 4.445 units from 〈b〉, before dividing it by N.
Statistical errors are much smaller than symbol sizes.

We thus conclude that � = 0.9 ± 0.1 which suggests that the leading corrections to
scaling are analytic (� = 1 exactly). This is in agreement with the exact enumerations of
[6, 39, 40] and with the exactly known correction exponent for the Lee–Yang problem [9, 74],
but disagrees with the Monte Carlo estimate 0.65 ± 0.20 of [55]. Note that originally [11] the
connection between the Lee–Yang and animal problems was established only for the leading
terms, and therefore the authors of [9] suggested not to use the Lee–Yang correction to scaling
exponents for animals. But the recent proof of [12] gives an exact mapping between two
models in the respective universality classes, and therefore we should use the mapping also
for the corrections to scaling.

The critical exponent ν and the growth constant µ can be read off figures 12 and 13, and
are reported in table 1. The latter contains also our main results for all other dimensions.
We see that our estimates for µ and ν are still much worse than the results obtained by the
extremely long exact enumerations of Jensen, but they are more precise than all other previous
estimates.

We have also made ‘unbiased’ fits where we did not assume the theoretical values θ = 1.
We do not show details, we just mention that our data would seem to exclude |θ − 1| > 0.002.

Finally, we show in figure 14 the average numbers of boundary sites. More precisely,
with 〈b〉 being this average, we plot (〈b〉 − 4.445)/N against 1/N2. Subtracting 4.445 units
was done in order to reduce finite size effects. Without the very large correction 4.445/N , this
term would dominate any other correction term, and would mask in particular any possible
non-analytic correction. The linear shape of the curve suggests that there are no non-analytic
corrections, and that the next to leading term is ∼1/N2, but the data are too poor to allow a
firm conclusion.

3.2. d > 2

For d = 3 we show the data for ZN and R2
N in figures 15 and 16, plotted in the same way as in

figures 12 and 13. Now the straightest line is clearly obtained for δ < 1, i.e. there definitely
seem non-analytic corrections to scaling. The best fit was obtained with � = 0.75 ± 0.08
(upper panels in figures 15 and 16). But from the Lee–Yang problem we know [74] that we
have � = 1 also in d = 3. As seen from the lower panels in figures 15 and 16, where these data
are plotted against 1/N , this is clearly not supported by our data. But we cannot, of course,
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Table 1. Main results for site animals. For convenience we also give in the second column the
critical p values for site percolation.

d pc a = ln µ θ ν θ
(d−2)ν+1 � Method

2 0.5927 1.401 815 5(30) 1a,c 0.6412(5) – 0.9(1) Present work
1.401 815 696(5) 0.641 15(5) – 1.0 Series [6, 39]

0.642(10) – 0.65(20) MC [55]

3 0.311 6 2.121 858 8(25) 3/2a,c 1/2a,c 1a,c 0.75(8) Present work (partially constrained)
2.121 859 2(20) 3/2a,c 1/2a,c 1a,c 1a,c Present work (constrained)
2.120(2) Series [75]

1.502(3) 1a,c Series [74]
0.498(10) 0.54(12) MC [55]

4 0.1968 2.587 858(6) 1.835(6) 0.416 3(30) 1.001(7) 0.57(8) Present work (unrestricted)
2.587 858 3(40) 1.833(5) 0.418 1(25) 0.998(4) 5/6a,c Present work (partially constrained)
2.587 858 3(30) 1.834(4) 0.417(2) 1a,c 5/6a,c Present work (partially constrained)
2.587 848 3(30) 11/6a,c 5/12a,c 1a,c 5/6a,c Present work (constrained)

1.839(8) 5/6a,c Series [74]
2.601 2(15) MC [46]

0.415(11) 0.46(11) MC [55]

5 0.140 7 2.922 319 4(60) 2.080(7) 0.359(4) 1.001(9) 0.47(7) Present work (unrestricted)
2.922 320 5(30) 2.081 5(60) 0.360 5(20) 1a,c 0.622b,c Present work (constrained)

2.087 7(25) 0.622(12) Series [74]
2.080 7 ε-expansion [74]
2.10(3) 0.367(11) 1a,c 0.65(15) Series [9]

2.899(9) Expansion in 1/(2d − 1) [76]
2.940(15) MC [46]

0.359(11) 0.40(14) MC [55]

6 0.109 0 3.178 524 5(40) 2.261(12) 0.315(4) 1.000(12) 0.39(6) Present work (unrestricted)
3.178 521(3) 2.256(8) 0.314(2) 1a,c 0.412b,c Present work (constrained)

2.264 8(15) 0.412(8) Series [74]
2.264 9 ε-expansion [74]
2.30(4) 0.325(10) 1a,c 0.5(2) Series [9]

3.172(3) Expansion in 1/(2d − 1) [76]
3.20(2) MC [46]

0.321(19) 0.34(13) MC [55]

7 0.088 9 3.384 080(5) 2.40(2) 0.282(5) 0.996(20) 0.26(6) Present work (unrestricted)
3.384 079(3) 2.390(9) 0.278(2) 1a,c 0.205b,c Present work (constrained)

2.402(5) 0.205(5) Series [74]
2.499 9 ε-expansion [74]
2.41(3) 0.282(6) 1a,c 0.4(2) Series [9]

3.382(1) Expansion in 1/(2d − 1) [76]
3.41(1) MC [46]

0.291(11) 0.35(7) MC [55]

8 0.075 2 3.554 827(4) 5/2a,c 1/4a,c 1a,c 0 (+logs) Present work
3.554 4(7) Expansion in 1/(2d − 1) [76]

9 0.065 2 3.700 523(10) 5/2a,c 1/4a,c 1a,c 0.25(5) Present work

a Exact value.
b From [74].
c Used as constraint in the fit.
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Figure 15. Similar to figure 12, but for d = 3. The straightest curve was now obtained by plotting
the data against 1/N0.75 (upper panel). In the lower panel, the same data are plotted against 1/N .

exclude the possibility that this is due to very large higher order corrections to scaling. In
view of this we show in table 1 two fits, one unrestricted where � is fitted from the present
data and one constrained fit where � = 1 is imposed. In both fits the Parisi–Sourlas condition
θ = 1 + (d −2)ν and the exact values ν = 1/2 and θ = 3/2 were also used as constraints. Fits
without imposing ν = 1/2 and θ = 3/2, and without assuming the Parisi–Sourlas relation,
gave bigger errors for the growth constant, but gave exponents in full agreement with the
predictions: ν = 0.500 ± 0.002 and θ = 1.500 ± 0.001.

The problem with the correction to scaling exponent is obviously due to large sub-
leading corrections. It persists also in higher dimensions. For d = 4, e.g., we estimated
� = 0.57 ± 0.08, while the exact value obtained from the Lee–Yang problem is � = 5/6.
We present therefore in table 1 four different fits with various constraints: One completely
unrestricted, another with � = 5/6 imposed, a third with the Parisi–Sourlas relation imposed
in addition, and a final one with even the values θ = 11/6 and ν = 5/12 fixed. Note that the
growth constant can be obtained without knowing θ , if the Parisi–Sourlas relation is assumed:
in this case NZNRd−2

N ∼ µN(1 + const/N� + · · ·). From the values listed in table 1 we see
that all four fits are mutually consistent.

Similar fits were also made for d = 5, 6 and 7, but we list in table 1 only the results of
the unrestricted and of the completely restricted fits. In all the cases the agreement between
the fits is very good, showing the consistency of the data.
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For d = 8 we show in figures 17 and 18 the data for free energies and for gyration
radii, plotted against ln N . From these plots one sees clearly that the data agree with the
predicted exponents θ = 5/2 and ν = 1/4. But there are very large (presumably logarithmic)
corrections, compatible with the fact that d = 8 is the upper critical dimension. We have
not tried to make a detailed fit to these corrections, since we are not aware of any theoretical
prediction beyond the leading order [9], and because verifying logarithmic corrections is
notoriously difficult.

In figure 19, the average number of boundary sites are plotted in a way similar to figure 14.
This time an even bigger term 6.5/N had to be subtracted, in order to see any possible non-
analytic term. The fact that the curve is reasonably straight when plotted against 1/N2 suggests
again (as for d = 2) that there is no non-analytic correction term. Our estimates for the critical
exponents and for the growth constant are given in table 1.

The estimates for ν and for (θ − 1)/(d − 2) obtained by the unrestricted fits are also
shown in figure 20. According to Parisi and Sourlas, they should coincide. The agreement
is practically perfect. Moreover, both estimates have roughly the same errors, and estimating
ν indirectly, using equation (3), seems to give slightly smaller errors for d � 5 than the
direct measurement. For d = 6 and d = 7 our results are in very good agreement with the
ε(= 8−d)-expansion results of [34]. Our results are also in very good agreement (�1σ) with
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the series expansion of the binary Gaussian molecule mixture of [74], which gives for high
dimensions the most precise previous exponents for the Lee–Yang problem.

The growth constants seem to grow linearly with dimension,

µ(d) ≈ 5.49d − 8.94 (11)

for large d, although there are small but statistically significant deviations. More precise
expressions for the large-d behaviour are obtained from an expansion of ln µ in powers of 1/σ

with σ = 2d − 1 [76]:

ln µ(d) = ln σ + 1 − 2

σ
− 79

24σ 2
− 317

24σ 3
− 18 321

320σ 4
− 123 307

240σ 5
+ O(σ−6). (12)

A comparison of our data with different truncations of this expansion is shown in figure 21.
This comparison suggests strongly that the expansion is only asymptotic: for any fixed d,
there is an order beyond which the expansion gives values smaller than the true value, and
continues to decrease with increasing order.

Our estimates for the asymptotic number of boundary sites per cluster site are given in
table 2. The latter were all obtained by assuming no non-analytic corrections to scaling, since



Simulations of lattice animals and trees 793

Table 2. Asymptotic ratios between boundary and cluster sites, limN→∞〈b〉/N (column #2);
ratios between partition sums of bulk and wall-grafted animals (column #3); and average number
of contact of wall-grafted animals with that wall (column #4).

Dimension limN→∞〈b〉/N limN→∞ Z′
N/ZN 〈m〉

2 1.1951(1) 1.987(8) 2.892(2)
3 2.7877(1) 2.97(3) 5.07(1)
4 4.5859(2) 3.98(5) 7.50(5)
5 6.4909(2) 4.91(4) 10.12(6)
6 8.4503(1) – –
7 10.4363(2) – –
8 12.4346(1) – –
9 14.4378(2) – –

our data can be fitted for all d to 〈b〉/N = β + β1/N + β2/N
�′

with �′ ≈ 2. For large d, our
data seem to scale as

β(d) = lim
N→∞

〈b〉/N ∼ 2d − const. (13)

4. Animals attached to a wall

4.1. Athermal walls

In this section we will consider d-dimensional animals grafted with one monomer to an
impenetrable planar wall modelled by a hyperplane xd = 0. For this case, it was shown in
[18] that the partition sum, written now Z′

N instead of ZN , scales as

Z′
N ∼ µNN−θ ′

(14)

with the same µ as in the bulk, and with

θ ′ = θ. (15)

The last equation has a very simple heuristic explanation. Let us first map lattice points
x = (x1, . . . , xd) on a lattice of size Ld onto integers

ix = x1 + x2L, . . . , xdL
d−1 (16)

(we actually used this in our codes to index points by a single integer, as this simplifies
programming and makes memory access faster). Consider now the problem of counting all
animals restricted to the half space I+ = {

x : ix � i0 ≡ ix0

}
and positioned such that the site

x0 belongs to the animal. On the one hand, this means just that we consider animals with
fixed positions: for each shape we consider only that animal whose ‘smallest’ point is x0.
Since we had counted only once all cluster shapes related by translations, this means that
the partition sum obtained now is exactly equal to ZN . On the other hand this model is
equivalent to the animal being grafted to an impenetrable wall located at xd ≈ xd,0 which is
however not quite flat: xd jumps from xd,0 + 1 to xd,0 when any one of the other coordinates
xj (j = 1, . . . , d − 1) goes through xj,0. The proof of [18] then just shows that the scaling
behaviour is independent of these steps, and is the same as for a flat surface. In addition,
this argument shows that Z′

N > ZN for all N [18]. Indeed, one easily sees that the ratio
〈mN 〉0 = Z′

N/ZN is just the average number of contacts a free animal in the bulk would have
with a flat imaginary wall placed just below it. This is not equal to the average number of
contacts 〈mN 〉 of a grafted animal with its wall, because the latter animals are counted m times
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if they have m contacts: if we denote by ZN,m the number of configurations with m sites in
the bottom hyperplane and N sites total (so that ZN = ∑

m ZN,m), and by Z′
N,m the analogous

quantity for grafted animals, then Z′
N,m = mZN,m. Therefore, the average number of contacts

of a grafted animal is given by the second moment of m in the bulk ensemble divided by the first
moment, 〈mN 〉 ≡ ∑

m mZ′
N,m

/∑
m Z′

N,m = ∑
m m2ZN,m

/ ∑
m mZN,m ≡ 〈

m2
N

〉
0

/〈mN 〉0.
In figure 22 we show the ratio Z′

N/ZN against 1/N0.9, together with the average number
of contacts 〈mN 〉 of grafted animals, for d = 2. We see again straight lines, showing that

Z′
N/ZN, 〈mN 〉 ∼ const − const

N�′ (17)

with �′ = 0.9 ± 0.05. Similar results were found for larger dimensions. The values of �′ are
close to those of � but somewhat larger, and we see no theoretical reason why they should be
the same. We do not quote numbers since they are rather poorly determined. The asymptotic
values of Z′

N/ZN and 〈mN 〉 are given in table 2.

4.2. Animals attached to an attractive surface

The partition sum now is written as

Z
(1)
N (q) =

N∑

m=1

AN(m)qm (18)

where AN(m) is the number of configurations of lattice animals with N site having m sites on
the walls, and q = eε/KT is the Boltzmann factor, ε > 0 is the attractive energy between the
monomer and the wall.

As q → 1, there is no attraction between the monomer and the wall, i.e. Z
(1)
N (1) = Z′

N .
On the other hand it becomes clear that any cluster will collapse onto the wall, if q becomes
sufficiently large. Therefore we expect a phase transition from a grafted but otherwise detached
to an adsorbed phase, similar to the transition observed also for linear polymers.

Exactly at the transition point q = qc we expect the usual scaling laws

Z
(1)
N (qc) ∼ µNN−θs (19)
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and

RN ∼ Nν. (20)

In analogy to critical surface phenomena where this transition would correspond to the ‘special’
point [77], we expect ν to be the same Flory exponent as in the bulk, while θs should be a new
and independent exponent. The growth constant µ, although being not universal, should be
the same as in the bulk.

Away from the critical point we expect a scaling ansatz

Z
(1)
N (q) ∼ µNN−θs 
[(q − qc)N

φ], (21)

with the crossover exponent φ being a second new exponent. Taking the derivative of ln Z
(1)
N (q)

with respect to q and setting q = qc thereafter, we obtain for the average energy

EN(qc) = 〈εm〉 ∼ Nφ. (22)

Taking two derivatives we obtain for the specific heat per monomer near (but not exactly at)
the critical point

CN(q) = 1

NKT 2
(〈(εm)2〉 − 〈εm〉2) ∼ (q − qc)

−α (23)

with

α = 2 − 1/φ, (24)

while

CN(qc) ∼ N2φ−1. (25)

In principle, all four scaling laws can be used to locate the critical value qc. With conventional
(Metropolis type) Monte Carlo simulations one cannot use easily equation (19), since precise
estimates of the partition sum are difficult to obtain. In this case it is usually equation (23)
which is used. With PERM we do have very precise estimates of Z

(1)
N (q), and therefore we

can use equation (19), but we shall see that it is indeed equation (22) which gives—together
with the two others—the most precise estimate. This is very similar as for adsorption of linear
polymers [78].

In the following we shall assume ε = 1 without loss of generality. In order to compare
with previous analyses we want to have specific heats for discrete values of N, but for a
continuous range of q. They are most easily obtained from histograms

P(m; q) =
∑

Config.

qm′
δm,m′ (26)

which are normalized such that Z
(1)
N (q) = ∑

m P (m; q). Note that we obtain from the
simulations not only the shape of the histogram, but also its absolute normalization, which
makes it easy to combine two histograms obtained in runs with different nominal values of q.
All we have to know are rough values of their relative statistical errors. These we can estimate
from the number of tours which contribute to a particular value of m, �P(m; q) ∝ 1/

√
#tours.

Although this estimate is not very precise, it is fully sufficient to obtain smooth global
histograms by joining histograms which cover narrow regions in m.

Specific heats for 2d animals with lengths up to N = 1200 are shown in figure 23. These
data are very similar to the results of [53], although the latter are for trees. According to
Janssen and Lyssy [15–17] we expect α = 0, i.e. the specific heat curves for different N should
intersect exactly at the critical point. This gives roughly qc = 2.27. But a close look at the
inset in figure 23 reveals that these intersections slightly shift to larger q as N increases. Thus
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we have considerable corrections to scaling, preventing us from attributing error bars to this
estimate.

Alternatively, we turn towards the partition sum itself. In figure 24 we show log–log
plots of Z

(1)
N (q)/µN , for various values of q close to qc. We see the expected power law, but

determining the critical point from this figure is difficult because of the substantial corrections
to scaling. We thus multiply with an estimated power Nθs and plot the data against 1/N0.8.
The result is shown in figure 25 (where we actually plot the logarithm on the y-axis). Note that
we did not have to make a new estimate of µ; rather, we could take the old and very precise
estimate. The value θs = 0.87 was chosen so as to give the best straight line for a suitably
chosen qc. Indeed, from this plot we would conclude that qc ≈ 2.278.

We now turn towards equation (22). In figure 26 we plotted E/N0.48 instead of E/
√

N .
This was chosen because it suggests that qc ≈ 2.278, in agreement with the value obtained
above from ZN . Assuming φ = 1/2, in contrast, would have given qc ≈ 2.283 which would
be incompatible with the data for ZN .
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Finally, we plot N1−2φCN(q) against 1/N0.8, in order to compare with equation (25). As
seen from figure 27 this is fully consistent with qc ≈ 2.278. If we had taken φ = 1/2, we
would again get a too large estimate qc ≈ 2.285.

Summarizing, we obtain as our best estimates:

qc = 2.2778 ± 0.0008, φ = 0.480 ± 0.04 (27)

together with

θs = 0.870 ± 0.009, �s = 0.8 ± 0.2. (28)

The large error of �s reflects the fact that the best estimates obtained from the different
observables would be quite different, suggesting again large non-leading corrections. But this
seems to have little effect on the estimates of the other quantities. Since we believe that we have
taken into account all systematic errors, we claim that the Janssen–Lyssy conjecture φ = 1/2
is slightly but significantly violated in d = 2. The previous estimates φ = 0.505(15) [56]
and φ = 0.503(3) [57] most likely suffer from such systematic errors. On the other hand, our
result is in agreement with the MC estimate φ = 0.50(3) of [53]. Surprisingly, our estimate
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for φ agrees within the error bars with the most recent estimate of the cross-over exponent
for unbranched polymers attached to an attractive wall in three dimensions, φSAW = 0.484(2)

[79], while φSAW = 0.5 for unbranched 2d SAWs [80].
Before leaving this problem, we should discuss the gyration radii. Their behaviour near

the critical adsorption point is somewhat more complicated. For q > qc the gyration radius
scales as RN ∼ N . At q � qc we expect it to scale as RN ∼ Nν with the same value of ν as
in the bulk, as in other surface critical phenomena [77]. The effect of the wall is only seen
then in the amplitude A = limN→∞

〈
R2

N

〉/
N2ν . For q < qc it should be larger than for free

animals, and for q = qc we should expect it to be even larger, Abulk < Awall < Ac. The reason
is that the main effect of the wall is to squeeze the animal in the direction perpendicular to the
wall, which by the excluded volume effect makes it more extended in the direction parallel to
the wall.

This is somewhat analogous to the case of an unbranched polymer between two athermal
walls [81]: if the distance D between the walls is decreased, at first the shrinking of the
perpendicular extension dominates any increase parallel to the plates. However, if D is much
smaller than the Flory radius, the stretching parallel to the walls dominates, and RN increases
in comparison to a free polymer [81].

Our data (figure 28) indicate that RN/Nν is larger than for animals in the bulk (where
Abulk ≈ 0.189), and that it increases with q. But at q ≈ qc it is not monotonic in N: it increases
with N until N ≈ 300, and then decreases sharply. This strange behaviour might have been
expected from the analogy with unbranched self-avoiding walks between two athermal walls.
For small N and q = qc the effect of the wall is strong, and the increase of the size parallel to
the wall dominates. But for N → ∞ the effect of the wall becomes increasingly weaker, and
the stretching along the wall becomes less important. We verified that it is indeed the slower
increase of the parallel component which lets RN/Nν decrease for large N, but we found no
similar effect in simulations (unpublished) of unbranched polymers at the critical adsorption
point. Thus we have at the moment no good explanation for this effect.

For higher dimensions, the same kind of analysis as in d = 2 gave the estimates given
in table 3. The main problem in these analyses is again that the best estimate for the leading
correction to scaling exponents for the different observables did not quite agree with each
other. This hints at the presence of more than one important term in the scaling corrections,
and it dominates the error estimates. The most remarkable result seen in table 3 is the perfect
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Table 3. Critical Boltzmann factors, crossover exponents and critical exponents θs at the adsorption
transition for site animals on simple (hyper-)cubic lattices grafted to a flat attractive wall.

Dimension qc φ θs

2 2.2778(8) 0.480(4) 0.870(9)
3 1.4747(6) 0.50(1) 1.476(7)
4 1.2674(6) 0.50(2) 1.91(1)
5 1.1786(5) 0.51(3) 2.18(4)

agreement with the Janssen–Lyssy prediction φ = 1/2 in all dimensions �3. In particular, it
seems that the strong violation seen in [58] for d = 3 was due to an underestimation of finite
size effects. Actually, Janssen and Lyssy had derived φ = 1/2 only for d = 3, 4 and �8, but
not for d = 2.

Finally, we show in figure 29 the monomer density profile ρ(z) for 3d animals, where z

is the distance from the wall. Animal sizes for this figure were N = 4000. All curves must
of course go to zero for z → ∞. At temperatures far above Tc, i.e. at q � qc, the entropic
repulsion from the wall dominates and ρ(z) has a maximum at a finite value of z. In the
adsorbed phase ρ(z) has its maximum at z = 0 and decreases monotonically with z. Note that
the transition from non-monotonic to monotonic behaviour does not happen exactly at qc, but
for q slightly smaller than qc. Presumably this is a finite size effect, and the transition would
happen at qc for much larger animals.

5. Trees and bond animals

5.1. Site trees

The simplest modification of the codes presented so far is needed for simulating site trees. As
we pointed out in the introduction, site trees are site animals without loops. Thus the number
of nearest neighbour pairs is just N − 1 for a tree of N sites. It is easy to count the number
of occupied nearest neighbour pairs as the cluster grows. We have just to prune the growth as
soon as this number is equal or larger than N. Apart from that, pruning and branching is done
exactly as before, and all comments made in section 2 about the efficiency of the algorithm
apply also to site trees.
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Figure 29. Monomer density profiles ρ(z) (with z being the distance from the wall) for a 3d animal
grafted to an attracting wall.

We made simulations only for 2d site trees, and only with rather modest statistics.
Our results were fully in agreement with those of Jensen [40]. In particular we obtained
µ = 3.795 27(4) after three days of CPU time on a 3 GHz Pentium, to be compared to the
estimate 3.795 254(8) obtained in [40].

5.2. Bond animals and bond trees

In order to simulate bond animals and bond trees, one has to grow bond instead of site
percolation clusters. Cluster growth algorithms for bond percolation are very similar to those
for site percolation and about as easy. One just has to remember that in bond percolation one
often does not distinguish between clusters with the same configurations of sites, but with
different bond configurations. However, for animals it is essential to make this distinction.

Let us denote by k the number of non-bonded nearest neighbour pairs (often called
‘contacts’ in this context), by b the number of surface bonds, and by m the number of
established bonds between nearest neighbours. In the bond percolation ensemble, a cluster
with these ‘quantum numbers’ has a weight (cf equation ( 4))

PNkbm = pm(1 − p)b+k. (29)

This is slightly more complicated than in the site percolation case, but one can follow the
same strategy when using this to simulate (bond) animals. We just have to replace the number
of perimeter sites in the weight factor by b + k, and if we want to simulate trees, we have of
course to prune all configurations which are not tree-like. Growth sites have to be replaced by
growth bonds. Moreover, it is a bit more natural to consider ensembles with fixed m, i.e. with
fixed number of established bonds, rather than sites [8].

The heuristics worked out in section 2 remain valid: one obtains much better results
when the trees are grown breadth first instead of depth first; one should use a fitness function
f (C) = (1 − p)−gW(C), where g is now the number of growth bonds; and one should
simulate at a slightly subcritical value of p which approaches pc as the trees to be simulated
become larger and larger. For the same values of N, the optimal values of p/pc were however
somewhat smaller. For d = 2 and N = 1000, e.g., best results were obtained with p ≈ 0.45
(with pc = 1/2).
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Let us first discuss trees. In two dimensions, we obtained µ = 5.142 76 ± 0.000 02. This
is compatible with the best previous estimate, µ = 5.143 39 ± 0.000 72 [54], but more than an
order of magnitude more precise. Our estimate is based on rather small clusters (Nmax = 500),
but very high statistics: The error of ln ZN is � ln ZN=500 = 0.000 451. These simulations
confirmed also that the leading correction to scaling exponent is between 0.9 and 1.0. In three
dimensions we obtained µ = 10.546 46 ± 0.000 10. This case is a bit special, since it has
strange looking corrections to scaling, as seen from figure 30. Apart from figure 28, this is
our clearest and most striking example showing that the corrections cannot be described by
a single power, and illustrates the pitfalls in estimating correction to scaling exponents from
poor data. In other cases, the existence of more than one power in corrections to scaling have
often to be inferred less directly, e.g. by comparing different observables (see section 4.2) or
by invoking universality [82].

General animals were simulated only with somewhat lower statistics, since we are not
aware of any other recent high statistics simulations. On the square lattice we obtained
µ = 5.207 89 ± 0.000 04, to be compared with the previous series expansions estimate
5.208 ± 0.004 of [75]. On the simple cubic lattice we got µ = 10.615 39 ± 0.000 06, to
be compared with 10.63 ± 0.05 [34] and 10.62 ± 0.08 [83]. Mean-square gyration radii were
e.g. R2

N=499 = 347.974 ± 0.036 in d = 2 and R2
N=999 = 165.669 ± 0.022 in d = 3, to be

compared to the best previous MC estimates, 348.32±0.88 and 166.03±0.34 [8] (the quantity
n displayed in the first lines of tables A1 to A7 of [8] is not the number of bonds, as stated
there, but one plus this number).

Finally we point out that we can also use bond percolation as a starting point for the
simulation of site animals. We just have to use the fact that site animals are isomorphic to the
subset of bond animals with maximal number of bonds for a given configuration of occupied
sites. Using this we obtained for d = 2 results in agreement with those of section 3, but the
algorithm was somewhat less efficient than that based on site percolation.

6. Animal collapse

6.1. Collapse of site animals

In order to describe collapsing animals and/or trees, one has to introduce attractive monomer–
monomer interactions. Historically the first model of this type [30, 31] starts from site animals
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and introduces a contact energy for each ‘contact’, where a contact is a pair of occupied nearest
neighbour sites (note that the definition of contacts used here differs slightly from that used
for bond animals). Let us denote this energy as −ε, and the corresponding Boltzmann factor
as q = exp(βε) > 1. Let us furthermore denote by m the number of contacts. The partition
sum is then written as

ZN(q) =
∑

m

CN,mqm (30)

where CN,m is the number of different clusters with N sites and m contacts. If the clusters
are embedded in some solvent, repulsive monomer–solvent interactions need not be included
explicitly, since the number s of solvent contacts satisfies NN = s + 2m, where N is the
coordination number of the lattice (N = 2d on a simple hypercubic lattice).

Simulations with PERM are straight forward. We just have to modify the weight factors
WN to WN,m = WNeβm. We found that again, as for the previous case q = 1, it was better
to simulate clusters breadth first than depth first. We also verified that it was advantageous
to include a factor ≈(1 − p)−g in the fitness functions, just as for athermal clusters. But
the results were rather disappointing, at least for low dimensions. This might seem at first
surprising, given the fact that PERM works extremely well at the collapse transition of linear
polymers in three dimensions [20]. But it is easy to see the reason for this difference. For linear
polymers, d = 3 is the upper critical dimension, and θ polymers form essentially random
walks with very small logarithmic corrections. Thus starting off with random walks, PERM
can do with very few resampling steps. There is only one pruning or cloning needed for every
2000 simple forward steps [20]. Collapsing site trees, at least in low dimensions, are however
very different from site percolation clusters. A convenient observable to see this difference
is the average number 〈m〉 of contacts. For both models, 〈m〉 is roughly proportional to N.
But for site percolation on the simple cubic lattice one finds 〈m〉/N ≈ 0.15, while the same
number for collapsing animals (at q ≈ 3.22 [33]) is ≈ 0.40. Thus there is still a huge amount
of re-sampling needed, even more than for athermal animals where 〈m〉/N ≈ 0.065.

For this reason we do not even show any data for the collapse in d = 2 and d = 3. The
situation improves when d is increased. Results for d = 4 are shown in figure 31. We see a
rather sharp collapse transition at q = qc = 2.98 ± 0.02. It is hard to give precise estimates
of any critical exponents from these data. But the Flory exponent ν seems to be the same as
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for athermal animals, within rather small errors. This would not be easy to understand, if it
were exactly true. In any case, we are not aware of any theoretical prediction to compare this
with. We are not even aware of any prediction of the upper critical dimension for this collapse
transition.

6.2. Collapse of bond animals and bond trees

Let us now switch attention to collapse models based on bond animals. We have now two
different possible interactions. Instead of the single parameter ε for the interaction strength in
site animals, we can now introduce different parameters ε1 for bonded and ε2 for non-bonded
neighbour contacts, and define y = eε1 , τ = eε2 . Note that as before we do not have to
introduce also an additional interaction with the solvent, because the number b of surface
bonds is not independent of m, k and N:

2m + 2k + b = NN. (31)

We then define

ZN(y, τ ) =
∑

m,k

CN,m,ky
mτ k. (32)

The model discussed in the last subsection is obtained by taking the limit τ = 0 [25]. In this
limit only bond configurations with the maximal number of bonds (for a given configuration of
sites) contribute to the partition sum. On the other hand, bond percolation without reweighing
corresponds, due to equations (29) and (31), to the curve

y = p/(1 − p)2, τ = 1/(1 − p), 0 � p � 1, (33)

or, explicitly,

y = τ(τ − 1), τ � 1. (34)

Critical bond percolation (pc = 1/2) corresponds to y = τ = 2. Simulations should be
very easy in the neighbourhood of this point, but they also should be not too difficult in the
neighbourhood of the entire bond percolation line. The reason is simply that along the entire
line one should not need much resampling. This should be enough to obtain precise estimates
for large parts of the phase diagram, and in particular to clarify the existence of two different
collapsed phases. Results will be given in a forthcoming paper.

7. Conclusion

We have shown that the basic idea of PERM, namely the recursive implementation of biased
sequential sampling with re-sampling, can be applied also to lattice animals and lattice trees.
These are two models for randomly branched polymers. Our algorithm is extremely efficient
(except for the collapse of site animals), obviously much more efficient than previous Monte
Carlo algorithms. We applied it to simple (hyper-)cubic lattices in up to nine dimensions, but
made also less complete simulations on bcc and fcc lattices. Our algorithm works indeed better
in higher dimensions, nevertheless we obtained high statistics results also for large animals in
two dimensions.

We verified a number of theoretical predictions. In particular, we verified the Parisi–
Sourlas connection between entropic and Flory exponents, and we verified the values of these
exponents whenever they are exactly known. We also verified that the cross-over exponents for
branched polymer adsorption on plane walls is super-universal for d > 2, as predicted some
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time ago (but not for d = 2!), and we gave precise estimates of the other critical exponents at
this adsorption transition.

There are a number of problems we have not yet studied, although our algorithm seems
ideally suited for them, and which we plan to address in forthcoming papers. One is that
of collapsing animals where we hope to be able to verify or disprove the existence of two
different collapsed phases. Another is the dependence on the wedge angle, of the entropic
exponent of a 2d animal grafted at the tip of this wedge. In conformally invariant 2d
theories this angle dependence can be predicted, but lattice animals are not conformally
invariant.

Apart from these specific problems we believe that the present simulations have
demonstrated again the power of sophisticated sequential sampling methods, and of PERM in
particular. Although there are certainly many problems where other MC strategies are more
efficient, there are by now many examples where PERM seems unchallenged by any other
known method. Unfortunately (or, rather, fortunately for the livelihood of the subject) it is
hard to predict when PERM or a similar strategy will be the method of choice. But we are
confident that lattice animals will not be the last such problem.
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